
AN EVALUATION OF EXISTING METADATA COMPRESSION
AND ENCODING TECHNOLOGIES FOR MPEG-21 APPLICATIONS

Christian Timmerer, Ingo Kofler, Johannes Liegl, and Hermann Hellwagner

Department of Information Technology (ITEC), Klagenfurt University, Klagenfurt, Austria

{christian.timmerer, hermann.hellwagner}@itec.uni-klu.ac.at, {ikofler, jliegl}@edu.uni-klu.ac.at

Department of Information Technology (ITEC)
Klagenfurt University
Technical Report No. TR/ITEC/05/1.12
October 2005

AN EVALUATION OF EXISTING METADATA COMPRESSION
AND ENCODING TECHNOLOGIES FOR MPEG-21 APPLICATIONS

Christian Timmerer‡, Ingo Kofler, Johannes Liegl, and Hermann Hellwagner

Department of Information Technology (ITEC), Klagenfurt University, Klagenfurt, Austria

{christian.timmerer, hermann.hellwagner}@itec.uni-klu.ac.at, {ikofler, jliegl}@edu.uni-klu.ac.at

‡ christian.timmerer@itec.uni-klu.ac.at; phone +43 (463) 2700 3621; fax +43 (463) 2700 3699; www.itec.uni-klu.ac.at

ABSTRACT

XML-based metadata for digital media is becoming
increasingly important, as a consequence also calling for
efficient encoding and compression schemes for the
storage and transport of this metadata. Moreover, support
for streaming the XML metadata in conjunction with the
media data is highly desirable. Such support is provided,
for instance, by MPEG's Binary Format for Metadata
(BiM) encoding approach, which facilitates fragmenting,
delivering, and accessing the metadata in so-called Access
Units (AUs). In this paper, we present a quantitative
evaluation of existing XML metadata compression and
encoding techniques, reaching from widely used state-of-
the-art data compression algorithms to sophisticated
XML-aware encoding schemes. The comparison is based
on compressing MPEG-21 generic Bitstream Syntax
Descriptions (gBSDs) which can grow to non-negligible
sizes. The main conclusion from this investigation is that
in terms of pure compression efficiency on XML files, the
BiM approach (exemplified by the MPEG reference
software as well as a commercial version thereof) is
comparable – in terms of performance – with traditional
data or specific XML compression tools. However, when
XML metadata have to be fragmented, compressed, and
streamed in such fragments, the results indicate that the
BiM approach is superior to the other schemes.

1. INTRODUCTION

XML-based metadata is becoming increasingly important
and has been adopted by various communities including
the digital media computing community [1]. Within the
Moving Picture Experts Group (MPEG), two work items
deal with metadata, namely the “Multimedia Content
Description Interface” (MPEG-7) [2] and the “Multimedia
Framework” (MPEG-21) [2]. In both cases, W3C’s XML
Schema has been adopted or extended as needed.
However, in many use cases, e.g., within W3C, the
transport of metadata was neither foreseeable nor
desirable. This changed with the emergence of issues in a

context that is generally referred to as Universal
Multimedia Access (UMA) [4][5]. In UMA, metadata is
getting a key role and is used to support seamless access
to any type of (multimedia) content anywhere and
anytime. These issues have been recognized by MPEG
which resulted in the introduction of the MPEG-21
standard. MPEG-21 aims at enabling transparent and
augmented use of multimedia resources across a wide
range of networks and devices used by different
communities [3].

A vital part and important with regard to UMA is
MPEG-21 Part 7, entitled Digital Item Adaptation (DIA)
[6]. DIA provides – among others – normative description
tools enabling the construction of device and coding
format independent adaptation engines. Device
independence is realized through a unified description
format providing means for describing the usage
environment of Digital Items, such as terminal and
network characteristics. Coding format independence is
achieved by utilizing metadata describing the syntax of a
media bit-stream in a generic way; in addition, the
constraints and restrictions imposed by both the usage
environment and the content provider can be expressed in
a normative way and taken into account for content
adaptation and delivery.

As all related MPEG-7/-21 standards, DIA also
makes use of XML. Additionally, since DIA can be
applied within all stages of the multimedia delivery chain,
i.e., from the provider to the consumer, it becomes
apparent that metadata needs to be transmitted (together
with the actual media data) over the network, e.g., for
allowing metadata-driven content adaptation within
intermediate network devices such as proxies or gateways.
Due to the metadata’s plain text nature, it is obvious that
more efficient transport encoding schemes for XML-based
metadata are desirable, especially when streaming
requirements to constrained devices are not negligible or
compared to highly efficient coding formats of its
corresponding streaming media data, e.g., MPEG-4
AVC/H.264 [7]. Therefore and in order to overcome the

verbosity of plain text encoded XML as well as its non-
existing streaming capabilities, we argue that appropriate
compression, encoding, or even an alternative serialization
format for XML-based metadata is required.

In this paper we present a quantitative evaluation of
existing XML metadata compression and encoding
techniques, reaching from widely used state-of-the-art
data compression algorithms to sophisticated XML-aware
encoding schemes. The aim of this evaluation is to
investigate how well specific MPEG-7/-21 metadata
serialization schemes (BiM) work as compared to general
text and XML compression tools. Furthermore, the
comparison should provide guidelines for the readers for
selecting the suitable technology for their applications. We
emphasize that support for streaming the XML metadata is
increasingly important in distributed multimedia systems.

The remainder of this paper is organized as follows.
In Section 2 we describe the compression and encoding
approaches that we consider and compare. The
experimental setup and results are given in Sections 3 and
4, respectively. A discussion of the results is given in
Section 0 and Section 6 concludes the paper.

2. COMPRESSION AND ENCODING
TECHNIQUES FOR XML-BASED METADATA

In this section we provide an overview of some
representative compression and encoding techniques for
XML-based metadata. First we will briefly describe
traditional data compression approaches before providing
details about so-called intrinsic XML encoding
approaches.

2.1. Traditional Data Compression Techniques

bzip2. This compression technique is based on the
Burrows-Wheeler block-sorting lossless data compression
algorithm as described in [8]. The input is processed in
blocks of a certain size, which can be adjusted to either
make the compression faster or to increase the
compression ratio. Each of the blocks is transformed with
the so called Burrows-Wheeler Transformation (BWT)
which coarsely consists of building all possible rotations
of the block’s content by cyclic shifts and sorting them.
The advantage of this reversible transformation is that the
result can be efficiently processed with fast locally-
adaptive compression algorithms, like a move-to-front
coder [9] in combination with a Huffman coder [10],
which are used in bzip2. The compression achieved with
bzip2 is comparable with those of good statistical
modelers (e.g., [8]), but with the advantage that the
compressing speed is close to the compression based on
the Lempel/Ziv (LZ) algorithms [11][12].

gzip, WinZip. Both compression tools use the
deflate algorithm which incorporates a variation of the
LZ77 compression algorithm and Huffman coding. The

LZ77 algorithm reuses already seen strings of a message
for the transmission of upcoming ones. The longest
possible substring is searched in the already processed part
of the message and only its starting position and length are
transmitted. The search for a matching substring is
restricted to the last processed part of the message. This
makes the algorithm automatically adaptive to a change of
the probability distribution in the message. Given a
probability distribution of the source symbols the
Huffman algorithm calculates a code table which assigns
every symbol a sequence of bits. The Huffman code is an
optimal prefix code which means that no other assignment
of bit sequences would achieve a better compression and
that no delimiter between two Huffman coded symbols is
needed. In the deflate algorithm, the LZ77 is used to
identify matches and replace them with (start position,
length) pairs. The matches themselves are compressed
with one Huffman tree and match distances are
compressed with another tree.

2.2. XML-Aware Encoding Schemes

XMLPPM. XMLPPM is a compression tool for XML
documents that combines the well known Prediction by
Partial Match (PPM) and the Multiplexed Hierarchical
Modeling (MHM) algorithms [13][14].

Generally, PPM compression models maintain
statistics concerning which symbols have been seen in
which contexts of preceding symbols. For each input
symbol, the model is used to determine a probability
range. This range is then used to transmit the symbol
using arithmetic coding. During the compression the coder
updates its statistics continuously which is also done at the
decoder side.

In order to improve the efficiency of the PPM
compression, MHM is used, which is aware of the
structure of an XML document. The algorithm uses four
different PPM compression models: one for element and
attribute names, one for element structure, one for
attribute values, and one for strings (i.e., the actual data
within the XML elements). All are multiplexed based on
the syntactic context delivered by the parser. The idea of
switching between the four models improves the overall
compression but has still its drawback, because
multiplexing breaks existing sequential dependencies
between elements, attributes, etc. For example, the
information that an enclosing XML element has a strong
dependency with the enclosed data would not be used for
improving the PPM compression. Thus, MHM uses a
second technique which improves the efficiency by
providing the information to the different underlying PPM
compressors in which context (i.e., XML element) the
actual symbol is encountered.

XMill. XMill [15] exploits the self describing nature
of XML for compression. In order to achieve this goal it

leverages existing compression algorithms and tools like
zlib (the library function version of gzip) and some simple
data type specific compressors.

XMill applies three principles to compress XML
data. First, structure and data are separated. This means
that XML elements and attributes (the structure) are
compressed separately from the actual data items (i.e.,
strings) and attribute values. Second, related data items are
grouped into containers which are compressed separately.
Third, the last principle is to apply semantic processors on
the containers depending on the actual type of content,
e.g., optimized for strings or numbers. The information
which semantic processor is applied on a container is
obtained from the container expression provided by the
user through the command line interface. If no container
expression is provided the text compressor which just
copies the data into the containers is applied to every
container. Together with the path of the data value (i.e.,
the sequence of XML elements from the root to the data
value) in the XML document the container expression is
used to determine the container in which the data item is
filled. All containers are kept in a fixed-size memory
buffer. If this buffer is full, zlib is applied and it is stored
to disk and the compression resumes.

XMill is not designed to work with a query
processor. The target applications are data exchange to
better utilize network bandwidth (whole documents only)
and data archiving to reduce space requirement.

2.3. A Binary Format for Metadata

MPEG's Binary Format for Metadata (BiM) [17] is an
XML Schema aware encoding scheme for XML
documents, i.e., it uses information from the XML
Schema to create an efficient alternative serialization of
XML documents within the binary domain. This schema
knowledge enables the removal of structural redundancy,
e.g., element and attribute names, which achieves high
compression ratios with respect to the document structure.
Furthermore, element and attribute names as well as data
are encoded using dedicated codecs based on the data type
(integer, float, string) which further increases the
compression ratio. However, one of the main features of
BiM is that it provides streaming capabilities for XML-
based data which is one of the main disadvantages of plain
text XML. To that end, BiM divides the XML tree into
access units (AUs) containing one or more fragment
update units (FUUs). Each FUU includes the FU
command, FU context, and FU payload which are
described briefly as follows:

― The FU command specifies the decoder action
for the corresponding fragment which can be
either add, delete, replace, or reset, i.e., BiM also
provides partial updates of an XML document.

― The FU context is used to uniquely determine the
location of the fragment in the XML document.

― The FU payload contains the actual XML data
according to the context.

By definition, each AU can be decoded separately
while ensuring validity against the corresponding XML
Schema. The FUUs are processed according to the FU
command, i.e., added to, deleted from, or replaced in the
(partially) instantiated XML document. The reset
command resets the BiM decoder and starts again with the
initial description tree. Especially the replace command
enables selective updates of (parts of) a document.

3. EXPERIMENTAL SETUP

We conducted a series of experiments to measure and
compare the performance of the different metadata
compression and encoding tools. In particular, we
measured the decoding speed as well as the achieved
compression ratio of the different tools. In this section, we
provide an overview of the test data set and how we
conducted the experiments. All tests were performed on a
1.6 GHz P4 Mobile machine with 1024 MB main memory
and Windows XP installed. An overview of the considered
XML compression and encoding tools is given in Table 1.
Note that BinXML is a commercial version of, and largely
compliant to, the BiM.

The test data set comprises generic Bitstream Syntax
Descriptions (gBSDs) describing audio, video, and image
resources. For audio the MPEG-4 Bit Sliced Arithmetic
Coding (BSAC) codec is chosen providing fine-grained
scalability through enhancement layers. The BSAC gBSD
is described at a frame and group of frames (GOF) level
(i.e., 10 and 25 frames per GOF respectively). For video
we used MPEG-4 Visual Elementary Streams (VES)
encoded at the Advanced Simple Profile which includes
B-frames. The VES gBSDs are provided at the same
granularity as the BSAC gBSDs. Note that MPEG-4
introduced object-based coding and therefore the
equivalent to frames is called Video Object Planes
(VOPs). Finally, images are encoded using the JPEG 2000
wavelet-based compression algorithms. The JPEG 2000

Table 1 — XML compression and encoding tools.

Tool Name Versio
n

Program.
Language

Platform

bzip2 1.0.2 C/C++ Windows, Unix, Linux
WinZip, gzip 9.0 /

1.3.5
C/C++ Windows, Unix, Linux

XMLPPM 0.98.2 C/C++ Windows (compiled under
MS Visual Studio v. 6.0
with expat v. 1.95.8 and
libiconv 1.8)

XMill 0.8 C/C++ Windows
MPEG-7 BiM
reference software

Feb.
2005

Java Windows

BinXML™ 3.0.1 Java/C++ Windows, Linux

<dia:DIA xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS" xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
 xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS">
 <dia:DescriptionMetadata>
 <dia:ClassificationSchemeAlias alias="M4V" href="urn:mpeg:mpeg4:visual:cs:syntacticalLabels"/>
 </dia:DescriptionMetadata>
 <dia:Description xsi:type="gBSDType" addressUnit="byte" addressMode="Absolute"
 bs1:bitstreamURI="lotr.cmp">
 <gBSDUnit syntacticalLabel=":M4V:VO" start="0" length="18"/>
 <gBSDUnit syntacticalLabel=":M4V:GOV" art="18" length="105947" marker="0"> st
 <gBSDUnit syntacticalLabel=":M4V:I_VOP" start="18" length="12270"/>
 <gBSDUnit syntacticalLabel=":M4V:P_VOP" start="12288" length="7589"/>
 <gBSDUnit syntacticalLabel=":M4V:B_VOP" start="19877" length="3218"/>
 <!--... and so on ...-->
 </gBSDUnit>

images are completely described by the gBSD, i.e.,
without providing the gBSD data on a fragment basis.

Document 1 shows a fragment of the gBSD
describing the MPEG-4 VES including the DIA wrapper
elements and Document 2 provides the gBSD information
for a single MPEG-4 BSAC encoded audio frame. The
DIA wrapper element is similar to that of Document 1.

4. RESULTS

The results of the experiments are depicted in Figure 1
through Figure 5. For XMill we have provided two
measures, i.e., one using the PPM codec and another one
using the bzip2 codec for data compression. Figure 1
shows the results for the gBSD describing an MPEG-4
VES in terms of the compression ratios of the tools with
respect to the gBSD plain text counterpart. Figure 2 shows
the metadata overhead in percent with respect to the
original media resource size. Similar results can be found
in Figure 3 and Figure 4 for the gBSD describing an
MPEG-4 BSAC stream. All these results are measured in
“Total” (i.e., the complete gBSD is compressed/encoded)
or on a per fragment basis (i.e., individual frames, VOPs,
GOFs, or GOVs are compressed/encoded). In the latter
two cases we differentiated between 10 (i.e., GOV10 or
GOF10) and 25 (i.e., GOV25 or GOF25) frames per GOF
or VOPs per GOV, respectively. Note that only BiM and
BinXML provide such kind of fragmentation and
streaming functionality for XML-based metadata. For all
other compression and encoding tools, these fragments are
represented by using the textual equivalent of BiM and are
subsequently compressed with the respective tool.

On the one hand, the results of the achieved
compression ratio clearly show that the so-called XML-
aware compression tools provide the best results when
compressing the complete gBSD compared to traditional

compression schemes. However, in case where only
fragments of the media resource are described, BiM and
BinXML reach similar or even much better compression
ratios than traditional or XML-aware compression and
encoding schemes.

On the other hand, the metadata overhead
significantly increases when fragmenting the XML in a
very fine-grained manner, i.e., at a frame or VOP level,
and encoding or compressing it. Clearly, the metadata
overhead increases with decreasing fragment size.

For JPEG2000 (not shown here due to space
limitations), the plain text metadata are about 70% of the
size of the media data. All the tools are comparably
successful in reducing this overhead to 2–3% by means of
compression (compression ratio of approx. 25 to 35),
except BiM reference software (compression ratio 18).

 <!--... and so on ...-->
 </dia:Description>
</dia:DIA>

Document 1 — gBSD fragment describing an MPEG-4 Visual Elementary Stream encoded with Advanced Simple Profile and 10
Visual Object Planes (VOPs) per Group of VOPs (GOV). <gBSDUnit start="0" length="2680">

 <gBSDUnit length="208" addressMode="Consecutive">
 <Parameter length="11">
 <Value xsi:type="b11">335</Value>
 </Parameter>
 <gBSDUnit length="5"/>
 <Parameter length="6">
 <Value xsi:type="b6">48</Value>
 </Parameter>
 <gBSDUnit length="186"/>
 </gBSDUnit>
 <gBSDUnit length="2472" marker="el0-0el1-8el2-
24el3-32el4-48el5-56el6-64el7-80el8-88el9-104el10-
112el11-128el12-136el13-152el14-160el15-168el16-
184el17-192el18-208el19-216el20-232el21-240el22-
256el23-264el24-280el25-288el26-296el27-312el28-
320el29-336el30-344el31-360el32-368el33-384el34-
392el35-408el36-416el37-424el38-440el39-448el40-
464el41-472el42-488el43-496el44-512el45-520el46-
528el47-544el48-2472e" addressMode="Consecutive"/>
</gBSDUnit>
Document 2 — gBSD excerpt describing an MPEG-4 BSAC
frame. The last gBSDUnit element contains a marker
providing a handle for adapting the actual content.

Finally, Figure 5 provides runtime measurements for
decoding the metadata which shows that the BiM
reference software is much slower than the other tools.
The chart has been scaled down for better readability, i.e.,
BiM decoding (with the reference software) lasts around
4,000 ms for the “MPEG-4 VES” test data stream. In the
next section we will discuss these results in detail.

5. DISCUSSION

The runtime measurements clearly show that BiM
reference software is slower than the other tools.
However, we kindly note that, first, for BiM only the
MPEG reference software was provided which targets
only functionality and not performance. Second, for the
reference software only a Java version is available
whereas other tools are written in C/C++. However, the
commercial version thereof, i.e., BinXML, shows a
significant improvement over the reference software as
exemplarily shown for the MPEG-4 VES in Figure 5.
Please note that the purpose of the BinXML decoder is to
generate events (i.e., similar to SAX) and therefore speed
up the overall application process, e.g., interpreting or
transforming the XML data, and not to generate XML

documents. Therefore, the measurements only provide the
decoding speed – including the generation of the SAX
events – without the actual XML document generation
which would quadruple the decoding runtime. All other
runtime measurements include the XML document
generation – without generation of SAX events.

From the compression ratio point of view, we
conclude that, for streaming XML-based metadata, BiM
provides comparable results to traditional compression

MPEG-4 VES

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

BiM BinXML bzip2 gzip xmill
ppmdi 6

xmill bzip2 xmlppm
0.98

Compression/Encoding tools

C
om

pr
es

si
on

 ra
tio

Total
VOP
GOV10
GOV25

Figure 1 — Compression ratio for gBSD describing MPEG-4

VES.

MPEG-4 VES

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

plain text BiM BinXML bzip2 gzip xmill
ppmdi 6

xmill
bzip2

xmlppm
0.98

Compression/Encoding tools

M
et

ad
at

a
ov

er
he

ad
 in

 %

Total
VOP
GOV10
GOV25

Figure 2 — Metadata overhead for gBSD describing an

MPEG-4 VES with regard to the size of the media resource.

MPEG-4 BSAC

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

BiM BinXML bzip2 gzip xmill
ppmdi 6

xmill bzip2 xmlppm
0.98

Compression/Encoding tools

C
om

pr
es

si
on

 ra
tio

Total
Frame
GOF10
GOF25

Figure 3 — Compression ratio for gBSD describing MPEG-4

BSAC.

MPEG-4 BSAC

0.00

50.00

100.00

150.00

200.00

250.00

300.00

plain text BiM BinXML bzip2 gzip xmill
ppmdi 6

xmill
bzip2

xmlppm
0.98

Compression/Encoding tools

M
et

ad
at

a
ov

er
he

ad
 in

 %
Total
Frame
GOF10
GOF25

Figure 4 — Metadata overhead for gBSD describing an

MPEG-4 BSAC with regard to the size of the media resource.

Runtime, decoding

0.0

50.0

100.0

150.0

200.0

250.0

BiM BinXML
(Java,
DOM)

BinXML
(Java,
SAX)

BinXML
(C++)

bzip2 gzip xmill
ppmdi 6

xmill
bzip2

xmlppm
0.98

Compression/Enoding tools

De
co

di
ng

 s
pe

ed
 in

 [m
s]

MPEG-4 VES
MPEG-4 BSAC
JPEG 2000

Figure 5 — Runtime measurements.

tools and in some cases, i.e., MPEG-4 VES, the
compression ratios are actually much higher than others.
Furthermore, we observe that the larger the fragments are
(i.e., the XML data to be encoded into one access unit) the
higher the compression ratio and the smaller the metadata
overhead. However, in case the XML fragments reach the
size of the whole XML document (gBSD), traditional
compression and encoding tools provide better results.
Therefore, the BiM approach is not suitable for simple
compression of whole documents without exploiting its
streaming functionality. Only the combination of
streaming XML and appropriate compression schemes
provides satisfactory results which can be achieved by
following the BiM approach. If the application
requirements focus on storage only, i.e., without streaming
the metadata over the network, we propose the usage of
traditional compression or to a certain extent XML-aware
compression techniques.

Regarding the metadata overhead the results have
shown that encoding the metadata in a fine-grained
manner is not advisable. Additionally, the achieved
compression ratio confirms this statement. However, if
such a kind of fragmentation is needed, the BiM approach
should be chosen which results in the smallest overhead
and also reasonable compression ratios.

6. CONCLUSION

We presented a quantitative evaluation of existing XML
metadata compression and encoding techniques, using
MPEG-21 gBSDs as test data. The main conclusion from
this investigation is that in terms of pure compression
efficiency on XML files, the BiM approach (exemplified
by the MPEG reference software as well as a commercial
version thereof) is comparable – in terms of performance
– with traditional data or specific XML compression
techniques (tools). However, when XML metadata have to
be fragmented, compressed, and streamed in such
fragments (i.e., encoded and not only compressed), the
results indicate that the BiM approach is superior to the
other schemes. This encourages further research into
streaming and processing MPEG-7/-21 metadata based on
this approach, which is required, e.g., for distributed
adaptation of multimedia contents.

7. ACKNOWLEDGMENTS

The authors would like to thank Expway for providing
BinXML™ and their technical support during the course
of the experiments.

8. REFERENCES
[1] F. Nack, “The Future in Digital Media Computing is

Meta,” IEEE MultiMedia Magazine, vol. 11, no. 2, Apr.-
Jun. 2004, pp. 10-13.

[2] S.-F. Chang, A. Puri, T. Sikora, and H. Zhang, eds., IEEE
Trans. on Circuits and Systems for Video Technology,
special issue on MPEG-7, vol. 11, no. 6, 2001.

[3] F. Pereira, J. R. Smith, and A. Vetro, eds., IEEE Trans. on
Multimedia, special section on MPEG-21, vol. 7, no. 3,
Jun. 2005.

[4] R. Mohan, J. R. Smith, and C.-S. Li, “Adapting Multimedia
Internet Content for Universal Access”, IEEE Trans. on
Multimedia, vol. 1, no. 1, Jan.-Mar. 1999, pp. 104-114.

[5] A. Vetro, C. Christopoulos, and T. Ebrahami, eds., IEEE
Signal Processing Magazine, special issue on Universal
Multimedia Access, vol. 20, no. 2, Mar. 2003.

[6] A. Vetro and C. Timmerer, “Digital Item Adaptation:
Overview of Standardization and Research Activities”,
IEEE Trans. on Multimedia, vol. 7, no. 3, Jun. 2005, pp.
418-426.

[7] G. Sullivan and T. Wiegand, “Video Compression - From
Concepts to the H.264/AVC Standard,” Proc. of the IEEE,
Special Issue on Advances in Video Coding and Delivery,
Vol. 93, No. 1, Jan. 2005, pp. 18-31.

[8] M. Burrows and D.J. Wheeler, “A block-sorting lossless
data compression algorithm,” Technical report, DEC, May
1994; http://citeseer.ist.psu.edu/76182.html.

[9] J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K. Wei, “A
locally adaptive data compression algorithm”,
Communications of the ACM, vol. 29, no. 4, Apr. 1986, pp.
320–330.

[10] D. A. Huffman, “A Method for the Construction of
Minimum Redandancy Codes”, Proc. of the Institute of
Radio Engineers 40, Sep. 1952, pages 1098–1101.

[11] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression”, IEEE Transactions on Information
Theory, vol. IT-23, no. 3, May 1977, pp. 337–343.

[12] J. Ziv and A. Lempel, “Compression of individual
sequences via variable rate coding”, IEEE Trans. on
Information Theory, vol. IT-24, no. 5, Sep. 1978, pp. 530–
535.

[13] J. Cheney, “Compressing XML with Multiplexed
Hierarchical PPM Models,” Proc. of IEEE Data
Compression Conf., Snowbird, Utah, USA, Mar. 2001, pp.
163–172.

[14] XMLPPM homepage; http://xmlppm.sourceforge.net/.
[15] H. Liefke and D. Suciu, “XMill: an Efficient Compressor

for XML Data,” Proceedings of the 2000 ACM SIGMOD
Int’l Conf. on Management of Data, Dallas, USA, May,
2000, pp. 153-164.

[16] Jun-Ki Min, Myung-Jae Park, Chin-Wan Chung,
“XPRESS: A Queriable Compression for XML Data,”
Proc. 2003 ACM SIGMOD Int’l Conf. on Management of
Data, San Diego, USA, Jun., 2003, pp. 122-133.

[17] U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, and A.
Kaup, “An MPEG-7 tool for compression and streaming of
XML data”, Proc. of the 2002 IEEE Int’l Conf. on
Multimedia and Expo (ICME), vol. 1, Lausanne,
Switzerland, Aug. 2002, pp. 521–524.

	timmerer-EvaluationMetadataCompression.pdf
	ABSTRACT
	1. INTRODUCTION
	2. COMPRESSION AND ENCODING TECHNIQUES FOR XML-BASED METADATA
	2.1. Traditional Data Compression Techniques
	2.2. XML-Aware Encoding Schemes
	2.3. A Binary Format for Metadata
	3. EXPERIMENTAL SETUP
	4. RESULTS
	5. DISCUSSION
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

AN EVALUATION OF EXISTING METADATA
COMPRESSION AND ENCODING TECHNOLOGIES

Christian Timmerer‡, Ingo Kofler, Johannes Liegl, and Hermann Hellwagner

Department of Information Technology (ITEC), Klagenfurt University, Klagenfurt, Austria

{christian.timmerer, hermann.hellwagner}@itec.uni-klu.ac.at, {ikofler, jliegl}@edu.uni-klu.ac.at

‡ christian.timmerer@itec.uni-klu.ac.at; phone +43 (463) 2700 3621; fax +43 (463) 2700 3699; www.itec.uni-klu.ac.at

ABSTRACT

XML-based metadata for digital media is becoming
increasingly important, as a consequence also calling for
efficient encoding and compression schemes for the
storage and transport of this metadata. Moreover, support
for streaming the XML metadata in conjunction with the
media data is highly desirable. Such support is provided,
for instance, by MPEG's Binary Format for Metadata
(BiM) encoding approach, which facilitates fragmenting,
delivering, and accessing the metadata in so-called Access
Units (AUs). In this paper, we present a quantitative
evaluation of existing XML metadata compression and
encoding techniques, reaching from widely used state-of-
the-art data compression algorithms to sophisticated
XML-aware encoding schemes. The comparison is based
on compressing MPEG-21 generic Bitstream Syntax
Descriptions (gBSDs) which can grow to non-negligible
sizes. The main conclusion from this investigation is that
in terms of pure compression efficiency on XML files, the
BiM approach (exemplified by the MPEG reference
software as well as a commercial version thereof) is
comparable – in terms of performance – with traditional
data or specific XML compression tools. However, when
XML metadata have to be fragmented, compressed, and
streamed in such fragments, the results indicate that the
BiM approach is superior to the other schemes.

1. INTRODUCTION

XML-based metadata is becoming increasingly important
and has been adopted by various communities including
the digital media computing community [1]. Within the
Moving Picture Experts Group (MPEG), two work items
deal with metadata, namely the “Multimedia Content
Description Interface” (MPEG-7) [2] and the “Multimedia
Framework” (MPEG-21) [2]. In both cases, W3C’s XML
Schema has been adopted or extended as needed.
However, in many use cases, e.g., within W3C, the
transport of metadata was neither foreseeable nor
desirable. This changed with the emergence of issues in a

context that is generally referred to as Universal
Multimedia Access (UMA) [4][5]. In UMA, metadata is
getting a key role and is used to support seamless access
to any type of (multimedia) content anywhere and
anytime. These issues have been recognized by MPEG
which resulted in the introduction of the MPEG-21
standard. MPEG-21 aims at enabling transparent and
augmented use of multimedia resources across a wide
range of networks and devices used by different
communities [3].

A vital part and important with regard to UMA is
MPEG-21 Part 7, entitled Digital Item Adaptation (DIA)
[6]. DIA provides – among others – normative description
tools enabling the construction of device and coding
format independent adaptation engines. Device
independence is realized through a unified description
format providing means for describing the usage
environment of Digital Items, such as terminal and
network characteristics. Coding format independence is
achieved by utilizing metadata describing the syntax of a
media bit-stream in a generic way; in addition, the
constraints and restrictions imposed by both the usage
environment and the content provider can be expressed in
a normative way and taken into account for content
adaptation and delivery.

As all related MPEG-7/-21 standards, DIA also
makes use of XML. Additionally, since DIA can be
applied within all stages of the multimedia delivery chain,
i.e., from the provider to the consumer, it becomes
apparent that metadata needs to be transmitted (together
with the actual media data) over the network, e.g., for
allowing metadata-driven content adaptation within
intermediate network devices such as proxies or gateways.
Due to the metadata’s plain text nature, it is obvious that
more efficient transport encoding schemes for XML-based
metadata are desirable, especially when streaming
requirements to constrained devices are not negligible or
compared to highly efficient coding formats of its
corresponding streaming media data, e.g., MPEG-4
AVC/H.264 [7]. Therefore and in order to overcome the

verbosity of plain text encoded XML as well as its non-
existing streaming capabilities, we argue that appropriate
compression, encoding, or even an alternative serialization
format for XML-based metadata is required.

In this paper we present a quantitative evaluation of
existing XML metadata compression and encoding
techniques, reaching from widely used state-of-the-art
data compression algorithms to sophisticated XML-aware
encoding schemes. The aim of this evaluation is to
investigate how well specific MPEG-7/-21 metadata
serialization schemes (BiM) work as compared to general
text and XML compression tools. Furthermore, the
comparison should provide guidelines for the readers for
selecting the suitable technology for their applications. We
emphasize that support for streaming the XML metadata is
increasingly important in distributed multimedia systems.

The remainder of this paper is organized as follows.
In Section 2 we describe the compression and encoding
approaches that we consider and compare. The
experimental setup and results are given in Sections 3 and
4, respectively. A discussion of the results is given in
Section 5 and Section 6 concludes the paper.

2. COMPRESSION AND ENCODING
TECHNIQUES FOR XML-BASED METADATA

In this section we provide an overview of some
representative compression and encoding techniques for
XML-based metadata. First we will briefly describe
traditional data compression approaches before providing
details about so-called intrinsic XML encoding
approaches.

2.1. Traditional Data Compression Techniques

bzip2. This compression technique is based on the
Burrows-Wheeler block-sorting lossless data compression
algorithm as described in [8]. The input is processed in
blocks of a certain size, which can be adjusted to either
make the compression faster or to increase the
compression ratio. Each of the blocks is transformed with
the so called Burrows-Wheeler Transformation (BWT)
which coarsely consists of building all possible rotations
of the block’s content by cyclic shifts and sorting them.
The advantage of this reversible transformation is that the
result can be efficiently processed with fast locally-
adaptive compression algorithms, like a move-to-front
coder [9] in combination with a Huffman coder [10],
which are used in bzip2. The compression achieved with
bzip2 is comparable with those of good statistical
modelers (e.g., [8]), but with the advantage that the
compressing speed is close to the compression based on
the Lempel/Ziv (LZ) algorithms [11][12].

gzip, WinZip. Both compression tools use the
deflate algorithm which incorporates a variation of the
LZ77 compression algorithm and Huffman coding. The

LZ77 algorithm reuses already seen strings of a message
for the transmission of upcoming ones. The longest
possible substring is searched in the already processed part
of the message and only its starting position and length are
transmitted. The search for a matching substring is
restricted to the last processed part of the message. This
makes the algorithm automatically adaptive to a change of
the probability distribution in the message. Given a
probability distribution of the source symbols the
Huffman algorithm calculates a code table which assigns
every symbol a sequence of bits. The Huffman code is an
optimal prefix code which means that no other assignment
of bit sequences would achieve a better compression and
that no delimiter between two Huffman coded symbols is
needed. In the deflate algorithm, the LZ77 is used to
identify matches and replace them with (start position,
length) pairs. The matches themselves are compressed
with one Huffman tree and match distances are
compressed with another tree.

2.2. XML-Aware Encoding Schemes

XMLPPM. XMLPPM is a compression tool for XML
documents that combines the well known Prediction by
Partial Match (PPM) and the Multiplexed Hierarchical
Modeling (MHM) algorithms [13][14].

Generally, PPM compression models maintain
statistics concerning which symbols have been seen in
which contexts of preceding symbols. For each input
symbol, the model is used to determine a probability
range. This range is then used to transmit the symbol
using arithmetic coding. During the compression the coder
updates its statistics continuously which is also done at the
decoder side.

In order to improve the efficiency of the PPM
compression, MHM is used, which is aware of the
structure of an XML document. The algorithm uses four
different PPM compression models: one for element and
attribute names, one for element structure, one for
attribute values, and one for strings (i.e., the actual data
within the XML elements). All are multiplexed based on
the syntactic context delivered by the parser. The idea of
switching between the four models improves the overall
compression but has still its drawback, because
multiplexing breaks existing sequential dependencies
between elements, attributes, etc. For example, the
information that an enclosing XML element has a strong
dependency with the enclosed data would not be used for
improving the PPM compression. Thus, MHM uses a
second technique which improves the efficiency by
providing the information to the different underlying PPM
compressors in which context (i.e., XML element) the
actual symbol is encountered.

XMill. XMill [15] exploits the self describing nature
of XML for compression. In order to achieve this goal it

leverages existing compression algorithms and tools like
zlib (the library function version of gzip) and some simple
data type specific compressors.

Table 1 — XML compression and encoding tools.

Tool Name Ver. Program.
Language

Platform

bzip2 1.0.2 C/C++ Windows, Unix, Linux
WinZip, gzip 9.0 /

1.3.5
C/C++ Windows, Unix, Linux

XMLPPM 0.98.2 C/C++ Windows (compiled under
MS Visual Studio v. 6.0
with expat v. 1.95.8 and
libiconv 1.8)

XMill 0.8 C/C++ Windows
MPEG-7 BiM
reference software

Feb.
2005

Java Windows

BinXML™ 3.0.1 Java/C++ Windows, Linux

XMill applies three principles to compress XML
data. First, structure and data are separated. This means
that XML elements and attributes (the structure) are
compressed separately from the actual data items (i.e.,
strings) and attribute values. Second, related data items are
grouped into containers which are compressed separately.
Third, the last principle is to apply semantic processors on
the containers depending on the actual type of content,
e.g., optimized for strings or numbers. The information
which semantic processor is applied on a container is
obtained from the container expression provided by the
user through the command line interface. If no container
expression is provided the text compressor which just
copies the data into the containers is applied to every
container. Together with the path of the data value (i.e.,
the sequence of XML elements from the root to the data
value) in the XML document the container expression is
used to determine the container in which the data item is
filled. All containers are kept in a fixed-size memory
buffer. If this buffer is full, zlib is applied and it is stored
to disk and the compression resumes.

XMill is not designed to work with a query
processor. The target applications are data exchange to
better utilize network bandwidth (whole documents only)
and data archiving to reduce space requirement.

2.3. A Binary Format for Metadata

MPEG's Binary Format for Metadata (BiM) [17] is an
XML Schema aware encoding scheme for XML
documents, i.e., it uses information from the XML
Schema to create an efficient alternative serialization of
XML documents within the binary domain. This schema
knowledge enables the removal of structural redundancy,
e.g., element and attribute names, which achieves high
compression ratios with respect to the document structure.
Furthermore, element and attribute names as well as data
are encoded using dedicated codecs based on the data type
(integer, float, string) which further increases the
compression ratio. However, one of the main features of
BiM is that it provides streaming capabilities for XML-
based data which is one of the main disadvantages of plain
text XML. To that end, BiM divides the XML tree into
access units (AUs) containing one or more fragment

update units (FUUs). Each FUU includes the FU
command, FU context, and FU payload which are
described briefly as follows:

― The FU command specifies the decoder action
for the corresponding fragment which can be
either add, delete, replace, or reset, i.e., BiM also
provides partial updates of an XML document.

― The FU context is used to uniquely determine the
location of the fragment in the XML document.

― The FU payload contains the actual XML data
according to the context.

By definition, each AU can be decoded separately
while ensuring validity against the corresponding XML
Schema. The FUUs are processed according to the FU
command, i.e., added to, deleted from, or replaced in the
(partially) instantiated XML document. The reset
command resets the BiM decoder and starts again with the
initial description tree. Especially the replace command
enables selective updates of (parts of) a document.

3. EXPERIMENTAL SETUP

We conducted a series of experiments to measure and
compare the performance of the different metadata
compression and encoding tools. In particular, we
measured the decoding speed as well as the achieved
compression ratio of the different tools. In this section, we
provide an overview of the test data set and how we
conducted the experiments. All tests were performed on a
1.6 GHz P4 Mobile machine with 1024 MB main memory
and Windows XP installed. An overview of the considered
XML compression and encoding tools is given in Table 1.
Note that BinXML is a commercial version of, and largely
compliant to, the BiM.

<dia:DIA xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS" xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
 xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS">
 <dia:DescriptionMetadata>
 <dia:ClassificationSchemeAlias alias="M4V" href="urn:mpeg:mpeg4:visual:cs:syntacticalLabels"/>
 </dia:DescriptionMetadata>
 <dia:Description xsi:type="gBSDType" addressUnit="byte" addressMode="Absolute"
 bs1:bitstreamURI="lotr.cmp">
 <gBSDUnit syntacticalLabel=":M4V:VO" start="0" length="18"/>
 <gBSDUnit syntacticalLabel=":M4V:GOV" art="18" length="105947" marker="0"> st
 <gBSDUnit syntacticalLabel=":M4V:I_VOP" start="18" length="12270"/>
 <gBSDUnit syntacticalLabel=":M4V:P_VOP" start="12288" length="7589"/>
 <gBSDUnit syntacticalLabel=":M4V:B_VOP" start="19877" length="3218"/>
 <!--... and so on ...-->
 </gBSDUnit>
 <!--... and so on ...-->
 </dia:Description>
</dia:DIA>

Document 1 — gBSD fragment describing an MPEG-4 Visual Elementary Stream encoded with Advanced Simple Profile and 10
Visual Object Planes (VOPs) per Group of VOPs (GOV). <gBSDUnit start="0" length="2680">

 <gBSDUnit length="208" addressMode="Consecutive">
 <Parameter length="11">
 <Value xsi:type="b11">335</Value>
 </Parameter>
 <gBSDUnit length="5"/>
 <Parameter length="6">
 <Value xsi:type="b6">48</Value>
 </Parameter>
 <gBSDUnit length="186"/>
 </gBSDUnit>
 <gBSDUnit length="2472" marker="el0-0el1-8el2-
24el3-32el4-48el5-56el6-64el7-80el8-88el9-104el10-
112el11-128el12-136el13-152el14-160el15-168el16-
184el17-192el18-208el19-216el20-232el21-240el22-
256el23-264el24-280el25-288el26-296el27-312el28-
320el29-336el30-344el31-360el32-368el33-384el34-
392el35-408el36-416el37-424el38-440el39-448el40-
464el41-472el42-488el43-496el44-512el45-520el46-
528el47-544el48-2472e" addressMode="Consecutive"/>
</gBSDUnit>
Document 2 — gBSD excerpt describing an MPEG-4 BSAC
frame. The last gBSDUnit element contains a marker
providing a handle for adapting the actual content.

The test data set comprises generic Bitstream Syntax
Descriptions (gBSDs) describing audio, video, and image
resources. For audio the MPEG-4 Bit Sliced Arithmetic
Coding (BSAC) codec is chosen providing fine-grained
scalability through enhancement layers. The BSAC gBSD
is described at a frame and group of frames (GOF) level
(i.e., 10 and 25 frames per GOF respectively). For video
we used MPEG-4 Visual Elementary Streams (VES)
encoded at the Advanced Simple Profile which includes
B-frames. The VES gBSDs are provided at the same
granularity as the BSAC gBSDs. Note that MPEG-4
introduced object-based coding and therefore the
equivalent to frames is called Video Object Planes
(VOPs). Finally, images are encoded using the JPEG 2000
wavelet-based compression algorithms. The JPEG 2000
images are completely described by the gBSD, i.e.,
without providing the gBSD data on a fragment basis.

Document 1 shows a fragment of the gBSD
describing the MPEG-4 VES including the DIA wrapper
elements and Document 2 provides the gBSD information
for a single MPEG-4 BSAC encoded audio frame. The
DIA wrapper element is similar to that of Document 1.

4. RESULTS

The results of the experiments are depicted in Figure 1
through Figure 5. For XMill we have provided two
measures, i.e., one using the PPM codec and another one
using the bzip2 codec for data compression. Figure 1
shows the results for the gBSD describing an MPEG-4
VES in terms of the compression ratios of the tools with
respect to the gBSD plain text counterpart. Figure 2 shows
the metadata overhead in percent with respect to the
original media resource size. Similar results can be found
in Figure 3 and Figure 4 for the gBSD describing an
MPEG-4 BSAC stream. All these results are measured in
“Total” (i.e., the complete gBSD is compressed/encoded)
or on a per fragment basis (i.e., individual frames, VOPs,

GOFs, or GOVs are compressed/encoded). In the latter
two cases we differentiated between 10 (i.e., GOV10 or
GOF10) and 25 (i.e., GOV25 or GOF25) frames per GOF
or VOPs per GOV, respectively. Note that only BiM and
BinXML provide such kind of fragmentation and
streaming functionality for XML-based metadata. For all
other compression and encoding tools, these fragments are
represented by using the textual equivalent of BiM and are
subsequently compressed with the respective tool.

On the one hand, the results of the achieved
compression ratio clearly show that the so-called XML-
aware compression tools provide the best results when
compressing the complete gBSD compared to traditional
compression schemes. However, in case where only
fragments of the media resource are described, BiM and
BinXML reach similar or even much better compression
ratios than traditional or XML-aware compression and
encoding schemes.

MPEG-4 BSAC

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

BiM BinXML bzip2 gzip xmill
ppmdi 6

xmill bzip2 xmlppm
0.98

Compression/Encoding tools

C
om

pr
es

si
on

 ra
tio

Total
Frame
GOF10
GOF25

Figure 3 — Compression ratio for gBSD describing MPEG-4

BSAC.

MPEG-4 BSAC

0.00

50.00

100.00

150.00

200.00

250.00

300.00

plain text BiM BinXML bzip2 gzip xmill
ppmdi 6

xmill
bzip2

xmlppm
0.98

Compression/Encoding tools

M
et

ad
at

a
ov

er
he

ad
 in

 %
Total
Frame
GOF10
GOF25

Figure 4 — Metadata overhead for gBSD describing an

MPEG-4 BSAC with regard to the size of the media resource.

Runtime, decoding

0.0

50.0

100.0

150.0

200.0

250.0

BiM BinXML
(Java,
DOM)

BinXML
(Java,
SAX)

BinXML
(C++)

bzip2 gzip xmill
ppmdi 6

xmill
bzip2

xmlppm
0.98

Compression/Enoding tools

D
ec

od
in

g
sp

ee
d

in
 [m

s]

MPEG-4 VES
MPEG-4 BSAC
JPEG 2000

Figure 5 — Runtime measurements.

MPEG-4 VES

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

BiM BinXML bzip2 gzip xmill
ppmdi 6

xmill bzip2 xmlppm
0.98

Compression/Encoding tools

C
om

pr
es

si
on

 ra
tio

Total
VOP
GOV10
GOV25

Figure 1 — Compression ratio for gBSD describing MPEG-4

VES.

MPEG-4 VES

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

plain text BiM BinXML bzip2 gzip xmill
ppmdi 6

xmill
bzip2

xmlppm
0.98

Compression/Encoding tools

M
et

ad
at

a
ov

er
he

ad
 in

 %

Total
VOP
GOV10
GOV25

Figure 2 — Metadata overhead for gBSD describing an

MPEG-4 VES with regard to the size of the media resource.

On the other hand, the metadata overhead
significantly increases when fragmenting the XML in a
very fine-grained manner, i.e., at a frame or VOP level,
and encoding or compressing it. Clearly, the metadata
overhead increases with decreasing fragment size.

For JPEG2000 (not shown here due to space
limitations), the plain text metadata are about 70% of the
size of the media data. All the tools are comparably
successful in reducing this overhead to 2–3% by means of
compression (compression ratio of approx. 25 to 35),
except BiM reference software (compression ratio 18).

Finally, Figure 5 provides runtime measurements for
decoding the metadata which shows that the BiM
reference software is much slower than the other tools.
The chart has been scaled down for better readability, i.e.,
BiM decoding (with the reference software) lasts around
4,000 ms for the “MPEG-4 VES” test data stream. In the
next section we will discuss these results in detail.

5. DISCUSSION

The runtime measurements clearly show that BiM
reference software is slower than the other tools.
However, it should be noted that, first, for BiM only the

MPEG reference software was provided which targets
only functionality and not performance. The commercial
version, BinXML, shows a significant improvement over
the reference software as exemplarily shown for the
MPEG-4 VES in Figure 5. Note that the purpose of the
BinXML decoder is to generate events (i.e., similar to
SAX) and therefore speed up the overall application
process, e.g., interpreting or transforming the XML data,
and not to generate XML documents. Therefore, the

measurements only provide the decoding speed without
the actual XML document generation which would
quadruple the decoding runtime. All other runtime
measurements include the XML document generation.

From the compression ratio point of view, we
conclude that, for streaming XML-based metadata, BiM
provides comparable results to traditional compression
tools and in some cases, i.e., MPEG-4 VES, the
compression ratios are actually much higher than others.
Furthermore, we observe that the larger the fragments are
(i.e., the XML data to be encoded into one access unit) the
higher the compression ratio and the smaller the metadata
overhead. However, in case the XML fragments reach the
size of the whole XML document (gBSD), traditional
compression and encoding tools provide better results.
Therefore, the BiM approach is not suitable for simple
compression of whole documents without exploiting its
streaming functionality. Only the combination of
streaming XML and appropriate compression schemes
provides satisfactory results which can be achieved by
following the BiM approach. If the application
requirements focus on storage only, i.e., without streaming
the metadata over the network, we propose the usage of
traditional compression or to a certain extent XML-aware
compression techniques.

Regarding the metadata overhead the results have
shown that encoding the metadata in a fine-grained
manner is not advisable. Additionally, the achieved
compression ratio confirms this statement. However, if
such a kind of fragmentation is needed, the BiM approach
should be chosen which results in the smallest overhead
and also reasonable compression ratios.

6. CONCLUSION

We presented a quantitative evaluation of existing XML
metadata compression and encoding techniques, using
MPEG-21 gBSDs as test data. The main conclusion from
this investigation is that in terms of pure compression
efficiency on XML files, the BiM approach (exemplified
by the MPEG reference software as well as a commercial
version thereof) is comparable – in terms of performance
– with traditional data or specific XML compression
techniques (tools). However, when XML metadata have to
be fragmented, compressed, and streamed in such
fragments (i.e., encoded and not only compressed), the
results indicate that the BiM approach is superior to the
other schemes. This encourages further research into
streaming and processing MPEG-7/-21 metadata based on
this approach, which is required, e.g., for distributed
adaptation of multimedia contents.

7. ACKNOWLEDGMENTS

The authors would like to thank Expway for providing
BinXML™ and their technical support during the course
of the experiments.

8. REFERENCES
[1] F. Nack, “The Future in Digital Media Computing is

Meta,” IEEE MultiMedia Magazine, vol. 11, no. 2, Apr.-
Jun. 2004, pp. 10-13.

[2] S.-F. Chang, A. Puri, T. Sikora, and H. Zhang, eds., IEEE
Trans. on Circuits and Systems for Video Technology,
special issue on MPEG-7, vol. 11, no. 6, 2001.

[3] F. Pereira, J. R. Smith, and A. Vetro, eds., IEEE Trans. on
Multimedia, special section on MPEG-21, vol. 7, no. 3,
Jun. 2005.

[4] R. Mohan, J. R. Smith, and C.-S. Li, “Adapting Multimedia
Internet Content for Universal Access”, IEEE Trans. on
Multimedia, vol. 1, no. 1, Jan.-Mar. 1999, pp. 104-114.

[5] A. Vetro, C. Christopoulos, and T. Ebrahami, eds., IEEE
Signal Processing Magazine, special issue on Universal
Multimedia Access, vol. 20, no. 2, Mar. 2003.

[6] A. Vetro and C. Timmerer, “Digital Item Adaptation:
Overview of Standardization and Research Activities”,
IEEE Trans. on Multimedia, vol. 7, no. 3, Jun. 2005, pp.
418-426.

[7] G. Sullivan and T. Wiegand, “Video Compression - From
Concepts to the H.264/AVC Standard,” Proc. of the IEEE,
Special Issue on Advances in Video Coding and Delivery,
Vol. 93, No. 1, Jan. 2005, pp. 18-31.

[8] M. Burrows and D.J. Wheeler, “A block-sorting lossless
data compression algorithm,” Technical report, DEC, May
1994; http://citeseer.ist.psu.edu/76182.html.

[9] J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K. Wei, “A
locally adaptive data compression algorithm”,
Communications of the ACM, vol. 29, no. 4, Apr. 1986, pp.
320–330.

[10] D. A. Huffman, “A Method for the Construction of
Minimum Redandancy Codes”, Proc. of the Institute of
Radio Engineers 40, Sep. 1952, pages 1098–1101.

[11] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression”, IEEE Transactions on Information
Theory, vol. IT-23, no. 3, May 1977, pp. 337–343.

[12] J. Ziv and A. Lempel, “Compression of individual
sequences via variable rate coding”, IEEE Trans. on
Information Theory, vol. IT-24, no. 5, Sep. 1978, pp. 530–
535.

[13] J. Cheney, “Compressing XML with Multiplexed
Hierarchical PPM Models,” Proc. of IEEE Data
Compression Conf., Snowbird, Utah, USA, Mar. 2001, pp.
163–172.

[14] XMLPPM homepage; http://xmlppm.sourceforge.net/.
[15] H. Liefke and D. Suciu, “XMill: an Efficient Compressor

for XML Data,” Proceedings of the 2000 ACM SIGMOD
Int’l Conf. on Management of Data, Dallas, USA, May,
2000, pp. 153-164.

[16] Jun-Ki Min, Myung-Jae Park, Chin-Wan Chung,
“XPRESS: A Queriable Compression for XML Data,”
Proc. 2003 ACM SIGMOD Int’l Conf. on Management of
Data, San Diego, USA, Jun., 2003, pp. 122-133.

[17] U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, and A.
Kaup, “An MPEG-7 tool for compression and streaming of
XML data”, Proc. of the 2002 IEEE Int’l Conf. on
Multimedia and Expo (ICME), vol. 1, Lausanne,
Switzerland, Aug. 2002, pp. 521–524.

		ABSTRACT

		INTRODUCTION

		COMPRESSION AND ENCODING TECHNIQUES FOR XML-BASED METADATA

		Traditional Data Compression Techniques

		XML-Aware Encoding Schemes

		A Binary Format for Metadata

		EXPERIMENTAL SETUP

		RESULTS

		DISCUSSION

		CONCLUSION

		ACKNOWLEDGMENTS

		REFERENCES

